tracker

TQMC

TQMC has acquired wide Domain Knowledge and Experience. You can FREELY access it here and here

DISCLAIMER: This matter here is a guide only. For authentic and up-to-date information, please contact TQMC.

The DIRECTIVES and STANDARDS listed here may have been subsequently REVISED . You must refer to the CURRENT REVISION and AMENDMENTS if any.

Wednesday, May 27, 2009

Transformers

Pole-mounted single-phase transformer with center-tappedsecondary. Note use of the groundconductor as one leg of the primary feeder.

transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors — the transformer's coils or "windings". Except for air-core transformers, the conductors are commonly wound around a single iron-rich core, or around separate but magnetically-coupled cores. A varying current in the first or "primary" winding creates a varying magnetic field in the core (or cores) of the transformer. This varying magnetic field induces a varying electromotive force (EMF) or "voltage" in the "secondary" winding. This effect is called mutual induction.

If a load is connected to the secondary, an electric current will flow in the secondary winding and electrical energy will flow from the primary circuit through the transformer to the load. In an ideal transformer, the induced voltage in the secondary winding (VS) is in proportion to the primary voltage (VP), and is given by the ratio of the number of turns in the secondary to the number of turns in the primary as follows:

 \frac{V_{S}}{V_{P}} = \frac{N_{S}}{N_{P}}

By appropriate selection of the ratio of turns, a transformer thus allows an alternating current (AC) voltage to be "stepped up" by making NS greater than NP, or "stepped down" by making NS less than NP.

Transformers come in a range of sizes from a thumbnail-sized coupling transformer hidden inside a stagemicrophone to huge units weighing hundreds of tons used to interconnect portions of national power grids. All operate with the same basic principles, although the range of designs is wide. While new technologies have eliminated the need for transformers in some electronic circuits, transformers are still found in nearly all electronic devices designed for household ("mains") voltage. Transformers are essential for high voltagepower transmission, which makes long distance transmission economically practical.

No comments:

Post a Comment